MyBooks.club
Все категории

Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
28 январь 2019
Количество просмотров:
188
Читать онлайн
Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира

Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира краткое содержание

Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - описание и краткое содержание, автор Шон Кэрролл, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Автор книги, известный американский физик-теоретик и блестящий популяризатор науки, рассказывает о физике элементарных частиц, о последних достижениях ученых в этой области, о грандиозных ускорителях и о самой загадочной частице, прозванной частицей Бога, о которой все слышали, но мало кто действительно понимает ее природу Перевернув последнюю страницу, читатель наконец узнает, почему эта частица так важна и почему на ее поиски и изучение свойств ученые не жалеют ни времени, ни сил, ни денег.Лондонское Королевское научное общество назвало книгу лучшей научно-популярной книгой 2013 года.

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира читать онлайн бесплатно

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - читать книгу онлайн бесплатно, автор Шон Кэрролл

По существу, протон в БАКе – это мягкий мешочек, набитый кварками, антикварками и глюонами, движущийся по кругу в пучковой трубе со скоростью, близкой к скорости света. Ричард Фейнман назвал все частицы, составляющие протоны, «партонами». Согласно теории относительности, объекты, движущиеся со скоростью, близкой к скорости света, укорачиваются в направления движения. Таким образом два протона, сталкивающиеся внутри детектора, напоминают плоские блины, нашпигованные партонами и налетающие друг на друга. На самом деле, когда один протон взаимодействует с другим, это означает лишь, что один из партонов одного протона взаимодействует с партоном другого протона. В результате трудно точно узнать, сколько энергии выделилось в столкновении, поскольку мы не знаем, какие партоны провзаимодействовали.


Изображение двух протонов, подлетающих друг к другу в эксперименте на БАКе. Обычно они имеют сферическую форму, но, поскольку протоны летят со скоростью, близкой к скорости света, из-за релятивистских эффектов они превращаются в блины. Внутри протонов находятся партоны, включающие кварки (черные кружки), антикварки (пустые кружки) и глюоны (закорючки). Кварков на три больше, чем антикварков, – это «валентные кварки». Все остальные партоны – виртуальные частицы.


Условия внутри детектора ВАКа могут стать довольно напряженными. Есть около 1400 банчей протонов в каждом пучке, и банч, перемещающийся в одном направлении, проходит внутри детектора мимо банча, движущегося в другом направлении около 20 миллионов раз в секунду. В каждом сгустке около 100 миллиардов протонов, так что есть очень много частиц, готовых к взаимодействию. Тем не менее, даже несмотря на то, что банчи имеют довольно маленькие размеры (около 2,5 тысячных сантиметра в поперечнике), они по-прежнему огромны по сравнению с размером протона. Основной объем банча – это пустое пространство. Каждый раз, когда пучки скрещиваются, между миллиардами протонов происходит всего лишь пара десятков взаимодействий.

Но пара десятков взаимодействий – это уже много. При одном столкновении двух протонов часто испускается поток всевозможных частиц, до 100 адронов в одном событии. Поэтому мы можем столкнуться с опасностью «наложения» – когда много событий внутри детектора происходят одновременно, и трудно понять, что произошло и где. Вот почему CMS и ATLAS должны максимально задействовать существующие в настоящее время технологические и вычислительные мощности. Чем больше столкновений, тем лучше, потому что это означает больше данных, но с другой стороны, если получить слишком много столкновений одновременно, невозможно понять, что произошло.

Частицы в детекторах

Конструкция детектора частиц определяется природой самих частиц. А какие частицы могут образоваться при столкновении? Только частицы Стандартной модели, которые мы уже знаем и любим, а именно: шесть кварков, шесть лептонов и различные бозоны – переносчики взаимодействий. (Мы надеемся получить и совершенно новые частицы, но они почти наверняка будут распадаться на частицы Стандартной модели.) Так что для того, чтобы объяснить логику конструирования детекторов, мы должны рассмотреть возможности образования различных частиц, понять, каким способом их можно обнаружить и правильно идентифицировать. Давайте пройдемся по списку.

Кварки

Кварки рассмотрим все вместе, поскольку они никогда не встречаются поодиночке – они заперты внутри адронов. Но в столкновении может образоваться пара кварк-антикварк, и две частицы быстро разбегутся в противоположных направлениях. В этом случае происходит следующее: включается сильное взаимодействие, и вокруг исходных частиц сгруппируются осколки адронов. В детекторе этот процесс будет соответствовать появлению упомянутых выше «струй». Задача аналитиков заключается не только в обнаружении образовавшихся адронов, (что является относительно простой задачей), но и в воссоздании истории образования отдельных струй, что не просто. Определение вида родившегося кварка может оказаться страшно трудной задачей, хотя для ее решения используются разные трюки. Например, прелестные кварки живут достаточно долго и до распада пролетают крошечное, но конечное расстояние. В результате частицы при распаде прелестного кварка возникают с небольшой задержкой по отношению к моменту основного столкновения, и эта задержка используется для их идентификации, даже если их собственные треки напрямую не наблюдаются.

Глюоны

Хотя глюоны являются бозонами, а не фермионами, они тем не менее сами чувствуют сильные взаимодействия, так что тоже проявятся в детекторе в виде струи адронов. Некоторое отличие состоит в том, что единичный глюон создать можно – например, его может выплюнуть какой-нибудь кварк, а вот новорожденные кварки всегда рождаются в паре с антикварками. Так что если вы видите три струи в событии, это означает, что в соударениях была создана пара кварк-антикварк и глюон. Сау Лан Ву и ее коллеги впервые установили, что глюоны реально существуют, использовав именно такие события.

W-бозоны, Z-бозоны, тау-лептоны, бозоны Хиггса

Эти совершенно разные частицы объединены в одну группу по одной простой причине: они очень тяжелые и поэтому недолговечные. Все они быстро распадаются на другие частицы, причем настолько быстро, что детекторы их зарегистрировать не могут, и судить о существовании этих частиц приходится, анализируя то, на что они распались. Из этого списка тау-лептоны имеют самое большое время жизни и при благоприятных условиях смогут прожить достаточно долго, чтобы их можно было идентифицировать.

Электроны и фотоны

Эти частицы проще всего и зарегистрировать, и точно измерить их свойства. Они не фрагментируются в струи, в которых трудно разобраться, как кварки и глюоны, зато охотно взаимодействуют с заряженными частицами в материале детектора, создавая электрический ток, который просто измерить. К тому же их просто отличить друг от друга, поскольку электроны (и позитроны – их античастицы) электрически заряжены и, следовательно, подвержены влиянию магнитного поля, в то время как фотоны нейтральны и двигаются беспрепятственно по прямой.

Нейтрино и гравитоны

Эти частицы не чувствуют ни сильного взаимодействия, ни электромагнитного поля. Следовательно, практически нет никакого способа зарегистрировать их в детекторе, и они просто пролетают сквозь него незамеченными. Гравитоны появляются только при гравитационном взаимодействии, а оно столь слабое, что в коллайдере гравитоны не рождаются, и мы выбросим из головы. (В некоторых экзотических теориях утверждается, что гравитация при высоких энергиях велика, то есть что рождение гравитонов в коллайдере возможно. Конечно, такая вероятность принимается во внимание.) Нейтрино, однако, рождаются при слабых взаимодействиях, причем постоянно. Они – единственные частицы Стандартной модели, которые нельзя обнаружить, хотя они вполне способны появиться в столкновениях. Таким образом, выработалось простое правило: все, что не обнаруживается, можно считать нейтрино.

Когда два протона летят навстречу друг другу, они оба движутся вдоль пучковой трубы, поэтому их суммарный импульс в направлении, перпендикулярном к пучку, будет равен нулю. Общий импульс системы сохраняется, поэтому он должен быть равен нулю и после столкновений. Следовательно, мы можем измерить импульсы зарегистрированных частиц, и если их сумма не равна нулю, значит там были нейтрино, двигавшиеся в другую сторону, и их суммарный импульс должен компенсировать импульс зарегистрированных частиц. Этот метод называется методом «недостающего поперечного импульса» или просто «недостающей энергией». Мы, возможно, не знаем, сколько образовалось нейтрино, унесших недостающий импульс, но это часто можно понять, определив, какие еще частицы были произведены. (Например, в результате действия слабых сил создается не только мюон, но и мюонное нейтрино.)

Мюоны

Остается мюон, который является одной из самых перспективных частиц с точки зрения экспериментов на БАКе. Как и электроны, мюоны оставляют легко узнаваемые электрические следы, и их траектории искривляются в магнитном поле. Но они в двести раз тяжелее электрона. Это означает, что они могут распадаться на более легкие частицы. Их время жизни довольно велико. В отличие от еще более тяжелых тау-лептонов мюоны, как правило, живут так долго, что успевают добраться до конца детектора. Мюон продирается через все его слои подобно тяжелому джипу, проезжающему по пшеничному полю. Как и джип, мюон на своем пути оставляет легко узнаваемый след.

Мюоны проникают глубоко в обычное вещество как жесткое рентгеновское излучение. Это свойство нашло интересное применение несколько лет назад благодаря Луису Альваресу, который получил Нобелевскую премию за открытие разных адронов на Беватроне. Альварес заинтересовался египетскими пирамидами, и, в частности, большими пирамидами фараона Хеопса и его сына Хефрена, которые расположены недалеко друг от друга в Гизе. Пирамида Хеопса – Великая пирамида – раньше была еще на 7 м выше, но под действием внешних воздействий осела и стала немного ниже, чем пирамида Хефрена. Внутри пирамиды Хеопса имеются три камеры, в то время как в пирамиде Хефрена, кроме погребальной камеры на уровне земли, других помещений не обнаружили. Это различие долгие годы не давало археологам покоя, и многие из них предполагали, что в пирамиде Хефрена имеются скрытые камеры.


Шон Кэрролл читать все книги автора по порядку

Шон Кэрролл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира отзывы

Отзывы читателей о книге Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира, автор: Шон Кэрролл. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.